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Abstract
The relativistic framework with its symmetries offers a natural definition for the
internal time of classical (non-quantum) physical systems as a Lorentz-invariant
observable. The internal-time observable, measuring the system’s aging or
internal evolution, is identified with the proper time of the system derived
from its centre-of-mass (CM) coordinate. For its definition as an observable
it is required that the system be symmetric not only under Lorentz–Poincaré
transformations but also under uniform scaling, with the associated existence of
a dilatation function D, and yet that D be a varying—not conserved—quantity.
Two alternative definitions are discussed, and it is found that in order to maintain
simultaneity of the CM time with the events that define it, it is necessary to
split the dilatation function into a CM part and an internal part.

PACS numbers: 03.30.+p, 03.50.−z, 11.30.−j

1. Introduction

The purpose of this paper is to derive and discuss, in a Lorentz-covariant manner, the concept of
internal time, its existence and properties, for classical (i.e., non-quantum) relativistic systems
of interacting particles, as an observable which is dependent on and defined by the particles’
degrees of freedom.

The motivation for looking for an internal-time observable comes from the simple fact
that complex systems evolve in time, their evolution embedded in their internal dynamics.
It is therefore reasonable and natural to expect the existence of an observable which is
capable of measuring, in some sense, the time evolution or aging of the system. Such a
time-like observable is internal, in the sense that it depends on the dynamical variables of
the constituents of the system, and at the same time is global in the sense that it provides a
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property that corresponds to the system as a whole (in the same way, in principle, as are the
total linear and angular momenta).

The concept of internal time of a physical system, defined from its own degrees of
freedom and being a means to measure its aging, gained some attention in recent years.
Internal time was introduced, in the context of non-equilibrium statistical mechanics, by
Misra, Prigogine and Courbage [1] as an operator acting on distribution functions in phase
space. A more general approach was proposed few years ago also by Vallèe (see [2] and
references therein). However, common to all these approaches is that they are rooted in the
Newtonian frame of mind, in which time is only external to all physical systems—an absolute,
referential parameter, common to all. As such, Newtonian time cannot be dynamically related
to the internal evolution of any physical system. Consequently, definitions of internal time in
Newtonian systems can only be ad hoc.

But in relativistic dynamics time has a dual nature. On the one hand, the sense of time—
as defined by the future light-cone—is external, transcendental, common to all; and in any
inertial frame the observer’s time, attached to that frame, serves as an external reference time
for all physical systems. On the other hand, the proper time of particles and systems, which
measures locally how time elapses for these particles and systems, is different and exclusive
for each particle or system. Being Lorentz invariant, the proper time may be regarded as a
measure of the age of the particle or system. This dichotomy of the relativistic time (which is
well and elegantly illustrated by the so-called twin paradox) provides the golden path towards
a natural definition of the internal-time observable.

For point particles lacking the internal structure the proper time is, and can only be,
defined from their trajectory in spacetime relative to an external referential time. But for
complex systems with an internal structure and evolution it is reasonable to expect that their
proper time—as the measure of age—is also related to their internal degrees of freedom, so
that it becomes a bridge between the internal structure of the system and the external time
measurement process.

The proper time of complex systems is therefore expected to have a double definition: one,
in relation to the external referential time, and another, in relation to the inner constitution of
the system. The external definition must be associated with the centre-of-mass (CM) trajectory
that describes the motion of the system as a whole in spacetime. The internal definition should
be as follows. Any system of particles is described, classically, by the bundle of trajectories
they traverse in spacetime. Picking arbitrarily an event x

µ
a on each particle’s trajectory, to any

such set of events there should correspond a proper-time value which is a functional of these
events, τ [{xa}], which may be interpreted as the corresponding age of the system as a whole.
Certainly, to each value of the proper time there corresponds in this way a whole range of
different such sets of events, not simultaneous in general, but there is no logical difficulty about
this fact. The proper time defined in this way is a Lorentz-invariant observable, in accordance
with the fact that the age of a system should be intrinsic and independent of any particular
reference frame, and thus can be identified with the sought-for internal-time observable.

The plan of the paper is as follows. In section 2 we recall the generic form of the
relativistic CM coordinate of systems with conserved linear and angular momenta. While its
spatial aspects have been well studied for several decades already, a corresponding analysis of
its time-like aspects is lacking. This is done in section 3, where it is found that application of
Lorentz–Poincaré symmetries necessarily leads to the existence of a non-conserved dilatation
function and two alternative definitions of the proper time in terms of it. Thus it turns out
that these systems must also enjoy some kind of symmetry under dilatations. In section 4
we obtain explicit expressions of the dilatation function for some families of many-particle
systems. A non-trivial issue of simultaneity between the CM-observer time and the proper-
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time observable then serves in section 5 to examine the two alternative definitions of the
proper-time observable. It is shown in section 6 that in order to maintain plain simultaneity, in
the standard sense, it is necessary to split the dilatation function into a CM part and an internal
part. Then only the CM part participates in the definition of the proper-time observable, while
the other provides a measure of the configuration of the spatial system and its deviation from
full symmetry. Section 7 contains final discussion and concluding remarks.

Notation. In the following, we consider dynamics described in a Minkowski spacetime
{xµ}, µ = 0, 1, 2, 3, with metric tensor gµν = diag(−1, 1, 1, 1). Space components only
are indexed by Latin letters. The unit fully anti-symmetric (Levi-Civita) pseudo-tensor is
εµνλρ = −εµνλρ = 1 for (µνλρ) an even permutation of (0, 1, 2, 3). It is also assumed
throughout that c = 1 unless specified otherwise.

2. The relativistic centre-of-mass

As indicated in the introduction, the internal-time observable should be defined, as the proper
time, from the CM trajectory that characterizes the motion of the system as a whole. Let us
recall the relevant and main aspects of the relativistic centre-of-mass.

The search for a proper definition of centre-of-mass for relativistic systems stretches from
the middle of the twentieth century [3]. While the Newtonian definition of the centre-of-mass
is very simple and straightforward, it is the dual nature of time in relativistic dynamics that
prevents simply carrying the Newtonian definition over to the relativistic realms.

In Newtonian dynamics the centre-of-mass can be defined either via the coordinates,

RCM =
∑

a mara

M
(1)

with M = ∑
a ma , or as moving with the total momentum of the physical system,

V CM = P tot

M
(2)

These two definitions are compatible, via the relation V CM = dRCM/dt , because Newtonian
time is universal and common to all. In relativistic dynamics, the compatibility is lost because
individual particles’ momenta are defined with respect to each particle’s proper time. Thus
the relativistic CM reference frame is usually defined in the second sense, as moving with the
total momentum of the physical system, while a new relation replacing equation (1) is sought
for.

While the CM velocity given by the relativistic counterpart of equation (2), V CM =
P tot/Etot, requires only the knowledge of the total energy–momentum of the system, the
rhs of equation (1) is related (Newtonianly) with the boost of Galilean transformations and
thus requires relativistically also the knowledge of the total angular-momentum tensor, the
generator of homogeneous Lorentz transformations. It is therefore assumed in the following
that the systems considered are closed, endowed with conserved total linear momentum P µ,
which also defines the total invariant mass of the system M = √−P µPµ, and conserved total
angular momentum Jµν . P µ and Jµν are the fundamental global observables that describe
the system, and at the same time are assumed to be the generators of global Lorentz–Poincaré
transformations. It is then expected that the CM coordinate is constructed from P µ and Jµν

together, possibly, with other observables that describe the system.
Since the CM frame moves, relative to a general inertial reference frame, with unit velocity

vector

Uµ = P µ

M
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the trajectory of the CM coordinate in spacetime (denoted here by Xµ) may always be
written as

Xµ(τ) = Rµ + τ · Uµ (3)

where Rµ is a constant 4-vector and τ can clearly be regarded as the CM proper time.
Appropriately fixing the zero of τ , Rµ may be assumed orthogonal to P µ without loss of
generality,

RµPµ = 0. (4)

Rµ may clearly be regarded as the constant spatial part of the CM coordinate. Unlike
the Newtonian case (equation (1)) in which the CM coordinate is uniquely defined, in the
relativistic case Rµ may be defined in an infinite number of ways, depending upon the
requirements and specifications upon Xµ or, what turns out to be equivalent, upon the internal
angular momentum: the internal angular momentum J

µν
int (not necessarily a spin tensor!) is

the result of splitting the total angular momentum into an orbital (CM) part and an internal
part,

Jµν = XµP ν − XνP µ + J
µν
int = RµP ν − RνP µ + J

µν
int (5)

Out of the six components of J
µν
int , three are determined by the condition

εµνλρ

(
Jµν − J

µν
int

)
P λ = 0

which follows from equation (5), leaving three independent degrees-of-freedom. These are
incorporated in the generic expression for Rµ which follows from equations (4) and (5) as [4]

Rµ =
(
Jµν − J

µν
int

)
Pν

P νPν

= −
(
Jµν − J

µν
int

)
Pν

M2
.

Various approaches to the relativistic CM issue have yielded a variety of expressions for
Rµ. Since these differences are immaterial for the purposes of the present paper they will not
be discussed here. For our purposes, it suffices to know that Rµ is fully definable as a constant
vector observable in terms of the dynamical variables of the constituents of the system.

So far, the above is well known. By this scheme, the CM coordinate is defined, except
for τ , in terms of the dynamical variables of the constituents of the system. τ , on the other
hand, was considered just as a time-like parameter and its definition as an observable remained
unknown. Thus, we now turn to establishing the necessary dynamic relations of τ with the
observables of the system, bringing τ to the level of an observable itself.

3. The internal-time observable

Let us start considering the symmetry properties of τ . The CM coordinate Xµ is expected
to behave like an ordinary spacetime coordinate under the symmetries of the Minkowski
spacetime, in particular like a 4-vector under homogeneous Lorentz transformations and be
appropriately translated under uniform translations,

xµ → xµ + aµ ⇒ Xµ → Xµ + aµ. (6)

Contracting equation (3) with Pµ yields

τ = −XµPµ

M
. (7)

With Xµ being a 4-vector in Minkowski spacetime, it follows that τ must be a Lorentz scalar.
From the translational transformation (6) of Xµ it follows that under uniform translations τ

transforms as

xµ → xµ + aµ ⇒ τ → τ − aµPµ

M
. (8)
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Since Xµ is expected to be an observable of the system, then so should τ be: the sensitivity of
τ to translations and the fact that the addition to τ in (8) depends on P µ (and is therefore an
observable by itself) necessarily imply that τ must be an observable as well.

Consider now the product X · P = XµPµ. This should be a scalar observable, and under
uniform translations it follows from (6) that XµPµ transforms as

xµ → xµ + aµ ⇒ XµPµ → XµPµ + aµPµ. (9)

It cannot be constructed out of P µ and Jµν only, because any quantity which is built from P µ

and Jµν alone must be a constant while τ and thus also XµPµ must be a time-like variable,
and in any case, it is impossible to construct from P µ and Jµν alone a scalar which satisfies
equation (9). Thus another global observable, distinct from P µ and Jµν , is required.

The global observable which has the same transformation properties as XµPµ is the
dilatation function D, the generator of uniform scaling: all dilatation functions are Lorentz
scalars and transform under uniform translations as

xµ → xµ + aµ ⇒ D → D + aµPµ. (10)

For a single free particle D is indeed given by xµpµ; for a system of free particles it is
given by a sum of the corresponding products, and interactions may also be included (see the
next section). We may therefore proceed with firm knowledge that D is definable and exists.
However, can we identify XµPµ with D?

The simplest, straightforward approach to the CM coordinate issue requires that Xµ be
constructed only from the generators of the global Minkowski spacetime symmetries, as indeed
is the case in Newtonian dynamics. Then Rµ = −JµνPν/M

2 and XµPµ must be identified
with D, and the proper-time observable is necessarily defined as

τ ≡ − D

M
. (11)

On the other hand, if XµPµ �= D then D may be regarded as being split, like Jµν in
equation (5), into a CM part (XµPµ) and an internal part in the form

D = DCM + Dint = XµPµ + Dint (12)

In this case, the proper-time observable should be defined as

τ ≡ −D − Dint

M
. (13)

The next sections are dedicated to discussing and deciding upon these two alternatives.
Concluding the present section, it is noted first that an inevitable result of the existence of the
dilatation function is that the systems in question, in addition to being Lorentz–Poincaré
symmetric, also enjoy some kind of symmetry under dilatations whose generator is the
dilatation function. This is in accordance with a result by Zeeman [5] that the global symmetry
transformations that leave causal relations invariant are uniform translations, homogeneous
spacetime rotations, space inversion, and dilatations. Therefore, the minimal symmetry group
is not 10 but 11 dimensional, with the generators P µ, Jµν and D. However, unlike P µ and Jµν

and what is usually expected from global observables and generators of symmetries, it should
also be noted that crucial in either of the definitions is that D not be a constant of the motion,
since otherwise τ would have been a constant and could not serve as a time-like variable. This
aspect is further discussed in the next section.

Finally, it is in place to point out that already Finkelstein, as early as 1949 [6], suggested
expression (7) for the proper time in the context of quantum field theory (where Xµ is the
position operator), but he insisted on keeping τ as a c-number parameter rather than a dynamical
observable. His τ had then to be invariant under translations which clearly contradicts the



672 U Ben-Ya’acov

required translational symmetry of Xµ (6) and τ (8). Johnson [7] considered a covariant
position operator with the correct translational symmetry (6), but used the proper time τ only
as an evolution parameter without relating it dynamically to the position operator. Kalnay and
Cotrina [8] used equation (7) for the proper time in Dirac’s theory of the electron following
Finkelstein’s proposal. They did regard it as an operator, but had already assumed several
alternative expressions for the position operator that are relevant only in the context of Dirac’s
theory. In the context of classical (non-quantum) relativistic dynamics, the CM proper time
τ was regarded just as a time-like parameter along the CM-coordinate spacetime trajectory,
without paying attention to its properties and possible dynamic relations with the particles of
the system (see, e.g., [9]). Apart from these attempts, no practical proposition seems to have
been made since then that relates τ to dynamical properties of the particles. In particular,
no relation has been made between the CM proper time or internal time and the dilatation
function D.

4. The dilatation function for systems of interacting particles

To realize the foregoing results within a specific model, let us consider relativistic (non-
quantum) many-particle systems which are symmetric under global Lorentz–Poincaré
spacetime transformations. These could be systems of n point particles, with masses ma

and moving on the trajectories xµ = x
µ
a (τa), a = 1, . . . , n, with τa being the proper time of

the ath particle. Being symmetric these systems are closed and endowed with conserved P µ

and Jµν .
Consider first a system of non-interacting particles with constant unit velocities u

µ
a . The

dilatation function is simply given by

D =
∑

a

xµ
a paµ (14)

with paµ = mauaµ the linear momenta of the single particles. Under uniform translations D
does indeed transform as required by equation (10),

xµ
a → xµ

a + aµ ⇒ D → D + aµPµ,

with total linear momentum Pµ = ∑
a paµ. The most important property of D for our purpose

here is that it is not a constant of the motion—rather, it is a function of the proper times of all
the particles with the differential

dD({τa}) =
∑

a

dxµ
a paµ =

∑
a

uµ
a paµ dτa = −

∑
a

ma dτa (15)

so that the non-constancy depends on the masses of the particles.
This definition for D deviated from the usual trend, which looks for a conserved quantity

which in our notation corresponds to D0 ≡ D +
∑

a maτa . We prefer here, and this preference
is indeed crucial for the present work, the definition (14) for two reasons:

(i) τ , and thus also D, as observables, are expected to be functions of dynamical variables,
namely spacetime coordinates and momenta of the particles. The particles’ proper times
are not dynamical variables.

(ii) The non-constancy of D is required for τ (in either of the above definitions) to be time
variable.

Andersen and von Baeyer [10] extended the free-particle definition of D0 based on
(14) and have shown the existence of a (conserved, D0-like) dilatation function for an
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electromagnetic two-body bound system with the Fokker–Wheeler–Feynman direct (action-
at-a-distance) interaction [11, 12]. Their results were later generalized by Stephas and von
Baeyer [13] for any number of particles interacting via the electromagnetic (vector) or scalar
(EM-like) direct action. These results may be further generalized for a larger family of systems
with direct interactions introducing a general interaction given by the action integrals, either
for scalar interactions,

S =
∑

a

− ma

∫
dτa −

∑
(a,b)

qaqb

∫ ∫
U

(
xab

2
)

dτa · dτb (16a)

or for vector interactions,

S =
∑

a

− ma

∫
dτa +

∑
(a,b)

qaqb

∫ ∫
U

(
xab

2
)

dxa · dxb (16b)

where dτa = √−dxa · dxa and xab
2 = (xa − xb)

2, qa is a generalized ‘charge’ and U
(
xab

2
)

is a generalized kernel (U(s) = δ(s) in the electromagnetic case). It then follows (see the
appendix for details) that a total dilatation function may be defined for both interactions as

D({τa}) ≡
∑

a

xµ
a (τa)paµ(τa) −

∑
(a,b)

qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)

×U ′(xab
2
)(

xa
2 − xb

2
)
(dτa · dτb) (scalar interaction) (17a)

≡
∑

a

xµ
a (τa)paµ(τa) +

∑
(a,b)

qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)

×U ′(xab
2
)(

xa
2 − xb

2
)
(dxa · dxb) (vector interaction) (17b)

where the single particle’s linear momenta are

paµ = δS

δx
µ
a

=

ma + qa

∑
b �=a

qb

∫
U

(
xab

2
)

dτb


 ẋaµ (scalar interaction) (18a)

= maẋaµ + qa

∑
b �=a

qb

∫
U

(
xab

2
)

dxbµ (vector interaction) (18b)

with ẋ
µ
a = dx

µ
a

/
dτ .

These dilatation functions are indeed Lorentz scalars, and under uniform translations they
transform as required by equation (10). They are not conserved, and their differentials are

dD({τa}) = −
∑

a


ma +

∑
b �=a

qaqb

∫
b

[
U

(
xab

2
)

+ xab
2U ′(xab

2
)]

dτb


 dτa

(scalar interaction) (19a)

= −
∑

a


ma −

∑
b �=a

qaqb

∫
b

[
U

(
xab

2
)

+ xab
2U ′(xab

2
)]

ẋa · dxb


 dτa

(vector interaction). (19b)
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For a general system of interacting particles, we apply the continuum picture and assume
that the system is endowed with a conserved energy–momentum tensor, written as the sum of
its kinetic (particles) and interaction parts

T µν(x) = T (par)µν(x) + T (int)µν(x)

=
∑

a

ma

∫ ∞

−∞
δ4[x − xa(τa)]ẋ

µ
a ẋν

a dτa + T (int)µν(x). (20)

Let � be an arbitrary space-like hypersurface. The trajectory of the ath particle cuts it at a
single event identified by the proper time τa = τ�

a , x
µ
a

(
τ�
a

)
. If the interaction part depends

only on the particles’ trajectories then the dilatation function, defined as in relativistic field
theory

D
({

τ�
a

}) =
∫

�

xµT ν
µ (d3x)ν, (21)

is a function of all the particles’ proper times. D is not a constant, and to compute its variation
let �′ be another space-like hypersurface very close to �, so that τ�′

a = τ�
a + dτa , and let 	

be the spacetime domain between � and �′. Then we get

dD
({

τ�
a

}) =
∫

	

T µ
µ (d4x) = −

∑
a

ma dτa +
∫

	

T (int)µ
µ(d4x). (22)

In the following, where the notation is clear, we omit the superscript in τ�
a .

The non-conservation of D is obviously a result of T µ
µ �= 0. It is interesting to note that

for massless systems (such as pure EM radiation) where T µ
µ = 0 and D is a constant, no rest

frame and thus no proper time may be defined.
All the dilatation functions defined above are understood as functions of sets {τa} of

proper times of all the particles, implicitly via their trajectories or momenta, so that to each
arbitrary choice of {τa} or the corresponding events

{
x

µ
a (τa)

}
along the particles’ world lines

there corresponds a value of D. In particular, if the interaction energy–momentum tensor in
(22) is traceless,

T (int)µ
µ = 0 (23)

or the interaction kernel in (19a) and (19b) satisfies the homogeneity condition

U
(
xab

2
)

+ xab
2U ′(xab

2
) = 0 (24)

corresponding to the propagator of the massless wave equation, then the differentials of D
contain only single-particle kinetic terms and are identical in form with the non-interacting
case (15).

Thus, for all the interactions that satisfy either equation (23) or (24) the differential of the
corresponding dilatation function is independent of the interaction. In the following, we limit
ourselves to these cases (which include anyway the electromagnetic interaction) and shall not
deal with other forms of interactions (see the appendix for possible extensions).

We therefore consider all the dilatation functions that share the same differential property

dD({τa}) = −
∑

a

ma dτa (25)

which integrates to

D({τa}) = D0 −
∑

a

maτa (26)

independently of the details of the particles’ trajectories (except, possibly, in D0). It is this
expression for D that we insert in equation (11) or (13) for the proper-time observable τ .
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It should be noted that the combination D0 = D({τa}) +
∑

a maτa is a constant of the
motion, but it cannot be regarded as an observable because of its explicit dependence on the
proper times of the particles. (The double integral interaction term in either (17a) or (17b)
depends on the τ via the limits of the integrals, but still it does so as a functional of the
trajectories of the particles. The sum

∑
a maτa , on the other hand, depends explicitly only

on the τ , without any ‘behind the scenes’ dependence on the particles’ trajectories, and thus
cannot be regarded as an observable.)

Finally, it is also noted that the homogeneity condition (24) implies that the actions (16a)
and (16b) are invariant under uniform scaling of the coordinates and particles’ parameters in
the form

xµ → eλxµ, ma → e−λma, qa → qa (27)

thus confirming that D is indeed associated with arbitrary uniform scalings. Under these
scalings the system’s observables transform as expected,

P µ → e−λP µ, Jµν → Jµν, D → D,

from which it is verified that Xµ also scales as a coordinate,

Xµ → eλXµ.

5. Simultaneity in the CM reference frame

We now use this many-particle system model to examine the two alternatives (11) and (13)
proposed for the proper-time observable τ .

Let us pick up arbitrarily an event on each particle’s trajectory, defining together an
arbitrary set of particles’ events

{
x

µ
a (τa)

}
with the corresponding set of proper times {τa}.

Each such set defines, via equation (11) or (13), a unique value of the CM proper time τ({τa})
as a function of the proper times of the particles (figure 1). In particular, all the particle’s
events may be chosen so that they are simultaneous in the CM reference frame (figure 2).
Then the question arises: Are these events also simultaneous with the CM proper time that
they define? In other words, Are the events that constitute τ as internal time simultaneous, in
the CM reference frame, with the time τ as measured along the CM-time axis?

This simultaneity question stems, of course, from the fact that τ has here a double role:
being, on the one hand, an observable whose value τ({τa}) is defined by the arbitrarily chosen
set of events

{
x

µ
a (τa)

}
, but, on the other hand, being the proper time measured along the

CM world line. Naive intuition directs us to expect identity of these two roles; however, as
becomes evident in the following, it turns out that the identity is not automatically ensured.

We start with the CM proper-time observable as defined by equation (11), identifying
X · P with D. Substituting equation (26) it is given by

τ({τa}) = −D({τa})
M

=
∑

a maτa − D0

M
. (28)

Consider the hyperplane x0 = t in the CM reference frame. Each particle’s trajectory (given
here as observed in the CM frame) xµ = x

µ
a (τa) cuts this hyperplane only once, defining for

each τa a unique function τCM
a (t) via the identity

x0
a (τa) = t ⇔ τa = τCM

a (t). (29)

All the particles’ events that correspond to these τa = τCM
a (t) are simultaneous with the

CM-observer time t, as in figure 2. Using these values of τa , one may compute via
equation (28) the corresponding proper-time observable

τ(t) =
∑

a maτ
CM
a (t) − D0

M
. (30)
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Figure 1. The proper time τ({τa}) corresponding to a set of events {xµ
a (τa)} of a system of particles

in a general reference frame.

Figure 2. The simultaneity problem for a system of particles in the CM frame.

The particles’ events corresponding to
{
τa = τCM

a (t)
}

are simultaneous with the corresponding
proper-time observable if and only if τ(t) = t , at least up to an additive constant. Thus, the
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simultaneity question may be rephrased as follows: Does τ(t) coincide with t, for every
conceivable system of particles?

To answer the question, differentiating equation (30) with respect to t (taking into account
the constancy of D0) yields

dτ

dt
= 1

M

∑
a

ma

dτCM
a (t)

dt
= 1

M

∑
a

maγ
−1(va) (31)

where va is the ath particle’s velocity as measured in the CM reference frame and the relation
dτCM

a (t) = γ −1(va) dt = √
1 − v2

a dt is used. Since proper times and the time coordinate
may be defined up to an additive constant, it follows from equation (31) that a necessary
and sufficient condition for the system’s proper time to be simultaneous with the events
that determine it is that the rhs of equation (31) be equal to 1, namely the existence of the
relation

M =
∑

a

maγa
−1 (32)

in the CM reference frame.
Relation (32) puts a very stringent condition on the system. It was shown by Schild [9]

for a two-body electromagnetic system, and recently extended by Louis–Martinez [14] for an
arbitrary number of particles, that this relation exists in the case of circular motion of all the
particles around their common centre-of-mass. It is not satisfied in any other solution known
today: in the case of general bound systems relation (32) exists only on the average [10],

M =
∑

a

ma

〈
γa

−1〉 (33)

and in the case of unbound systems it seems to be always violated, since in particular for a
system of free particles the total mass is

M =
∑

a

maγa.

As a simple illustration of this issue of simultaneity let us consider a system of n
non-interacting particles moving on the trajectories x

µ
a (τa) = u

µ
a τa + x

µ

a0 with normalized
4-velocities u

µ
a . With the particles’ proper times on a common CM-time hyperplane

−xµUµ = t given by (29)

τCM
a (t) = t + xa0 · U

−ua · U

the dilatation function becomes

D =
∑

a

maxa · ua = −
∑

a

maτa +
∑

a

maxa0 · ua

=
∑

a

mat

ua · U
+

∑
a

ma

[
xa0 · U

ua · U
+ xa0 · ua

]
so that the corresponding proper-time observable equation (30) is

τ(t) = − D

M
=

(∑
a

ma

−ua · P

)
· t −

∑
a

ma

M

[
xa0 · U

ua · U
+ xa0 · ua

]
.

Clearly, the coefficient of t on the rhs, equal to
∑

a (ma/M)γ −1
a (va), is less than 1,

demonstrating indeed that τ(t) cannot coincide with t itself.
We may therefore conclude that with the identification X ·P = D, with the corresponding

definition of τ by equation (11), it is impossible, in general, to describe the particles’ system
simultaneously in a time that is common to all the particles and coincides with the CM proper
time.
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6. Solution of the simultaneity problem

A necessary outcome of the results of the previous section is that if it is insisted that
X ·P = D (say, as part of a requirement that Xµ be defined only from P µ, Jµν and D) so that
equation (11) holds then the concept of simultaneity must be modified. It is necessary
then to consider an extended sense of simultaneity, which is accomplished on curved
hypersurfaces rather than hyperplanes (for instance, in the case of non-interacting particles
these hypersurfaces are hyperboloids symmetric around the CM-time axis).

However, the inability of the CM proper time thus defined to be simultaneous (in the
common sense) with the events that define it seems to be in disaccord with naive intuition, which
would expect such a simultaneity to always occur. Although this new sense of simultaneity
could be a valid result and our intuition wrong, it looks more like an anomaly, and we
would be more at ease if this anomaly could be removed. It will be shown now that it is
possible to retain the concept of simultaneity in its common sense by splitting D according to
equation (12) and using the corresponding internal-time definition (13).

Let us first consider a pair of non-interacting particles, moving on the trajectories
x

µ
a (τa) = u

µ
a τa + x

µ

a0 with normalized 4-velocities u
µ
a (a = 1, 2). The action differential

may be decomposed to a combination of a global part and an internal (relative to the CM
frame) part, up to a total differential,

dS = p1 · dx1 + p2 · dx2

= P · dX + q · dξ + d

[(
m2

1 − m2
2

)P · (x1 − x2)

M2

]
(34)

where

qµ = p
µ

1 + (p1 · U)Uµ = −p
µ

2 − (p2 · U)Uµ (35)

is the single particle’s momentum relative to the CM frame (q · P = 0),

ξµ = x
µ

1 − x
µ

2 +
P · (x1 − x2)

M2
P µ

is the relative spatial vector in the CM frame, and Xµ suggests an expression for the CM
coordinate,

Xµ = −p1 · P

M2
x

µ

1 − p2 · P

M2
x

µ

2 +
(x1 − x2) · P

M2

(
m2

1 − m2
2

M2
P µ + qµ

)
. (36)

The product X · P is clearly different from D, the difference being

Dint = D − X · P

= x1 · p1 + x2 · p2 +
p1 · P

M2
x1 · P +

p2 · P

M2
x2 · P +

(
m2

1 − m2
2

M2

)
(x1 − x2) · P

= (x1 − x2) · q +

(
m2

1 − m2
2

M2

)
(x1 − x2) · P. (37)

The pair’s common internal time then follows, with some algebra and using the single particles’
trajectories explicitly, as

τ = −X · P

M
= p2 · P

M3
x1 · P +

p1 · P

M3
x2 · P

= −D0

M
+

(p1 · P) (p2 · P)

M3

(
τ1

m1
+

τ2

m2

)
. (38)
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(For convenience, the origins of τ1 and τ2 are fixed by the conditions (x1o − x2o) · u1 =
(x1o − x2o) · u2 = 0.) These are the final expressions for τ both as an observable and as an
explicit function of the single particles’ proper times. It is interesting to note, in passing, that
the relative spatial vector in the CM frame, expressed in terms of the single particles’ proper
times,

ξµ(τ1, τ2) = x
µ

1 (τ1) − x
µ

2 (τ2) +
[x1(τ1) − x2(τ2)] · P

M2
P µ

= x
µ

1o − x
µ

2o + qµ

(
τ1

m1
+

τ2

m2

)
, (39)

is fully expressible as a function of τ alone, for any choice of τ1 and τ2.
Next we consider a system of n non-interacting particles with unit 4-velocities u

µ
a . The

single particle’s momentum relative to the CM frame is the component of p
µ
a orthogonal to

P µ, q
µ
a = p

µ
a + (pa · U)Uµ. On a common CM-time hyperplane −xµUµ = t the dilatation

function D is

D(t) =
∑

a

xa · pa =
∑

a

−(pa · U)(xa · U) +
∑

a

xa · qa

= −
∑

a

maγ (va)x
0
a +

∑
a

xa · qa = −Mt +
∑

a

xa · qa.

In accordance with equation (37), the common CM-time internal part of the dilatation function
is identified as

Dint(t) ≡
∑

a

xa · qa (40)

from which follows indeed the relation

t = −D − Dint

M
(41)

expressing the equality of the common CM time to the internal time defined by equation (13).
For a general interacting system, using the continuum picture, let the CM-time

hyperplane −xµUµ = t be the integration surface � in equation (21). Then we obtain

D(t) =
∫

x0=t

xµT 0
µ dV = t

∫
x0=t

T 0
0 dV +

∫
x0=t

xiT 0
i dV = −Mt +

∫
x0=t

xiT 0
i dV (42)

so that identifying

Dint(t) ≡
∫

x0=t

xiT 0
i dV (43)

equation (41) is recovered.
In conclusion, it seems more natural and reasonable to accept equation (13) as the

definition of the internal-time observable. Although a more general expression for the internal
dilatation function Dint = D − XµPµ, suitable for arbitrary collection of events with proper
times {τ1, . . . , τn} or integration hypersurface � in equation (21), is not available at the
moment, nevertheless it can be seen to provide a measure of the changes that the internal
configuration of the system undergoes during its evolution.

The validity of relation (32) for many-particle systems in circular motion implies that the
equal-time Dint, computed on a common CM-time hyperplane t = −x · U , vanishes in these
cases. In the continuum case, Dint(t) vanishes for systems with circular symmetry because
T 0

i must be angularly directed relative to the centre-of-mass. Thus, we conclude that circular
symmetry implies Dint(t) = 0. It may be noted that equation (37) suggests that the vanishing
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of Dint in the case of circular symmetry is limited, in general, only for sets of events
{
x

µ
a (τa)

}
which are CM-time simultaneous. For general bound systems Dint(t) is non-zero but bounded
with zero average, and application of this fact leads ([13, 16]) to the relativistic virial theorem
for electromagnetic systems, contained in equation (33). In the general case it bears the very
peculiar property of being time dependent, while being invariant under the global symmetries
of uniform spacetime translations, rotations and scaling; it may thus be regarded as being
‘transparent’ for these symmetry transformations.

7. Discussion and concluding remarks

We have shown how the internal time of classical (non-quantum) relativistic systems, identical
with the system’s proper time, is naturally defined as a Lorentz-invariant observable simply
related to the dilatation function D of the system, the latter being split into CM and internal
parts. The system is therefore required to be symmetric not only under Lorentz–Poincaré
transformations but also under uniform scaling.

A major novelty here is in the fact that this definition requires D to be a varying—rather
than conserved—quantity. It thus turns out that being a varying quantity is a necessary requisite
for the dilatation function to be a main tool in measuring the aging and internal evolution of
the system.

Still, there are those many-particle systems (including, in particular, electromagnetically
interacting) for which the variation of D depends only upon the particles’ proper times and is
independent of the details of the interactions. This property allowed us to discuss the internal
time of these systems uniformly, without recourse to the details of the interactions.

In deriving our results, we made use of the dual role that time has in Nature and is
disclosed in relativistic dynamics: time as measured by the clocks of any reference frame is
external to physical systems and cannot be an observable; but the actual measurement of time
with respect to any particular system is local, depending on its own proper time. It is only on
this conceptual basis of relativistic dynamics that we can talk of the internal time of a physical
system as an observable that can be a measure of its internal evolution1.

It is of interest to note how the internal-time scheme presented here stands in relation to
other internal-time or relativistic CM schemes; in particular, regarding the association between
dilatations and the proper or internal time of the particles’ system. All the other schemes for
relativistic CM coordinate and/or internal time seem to insist, at least explicitly, on defining
the internal time within the framework of the Lorentz–Poincaré symmetry only (see, e.g.,
[17, 18] and references therein, or [19]); this, in spite of the fact that the corresponding
Lorentz–Poincaré generators are constants of the motion and cannot provide for a time-like
varying observable. Apparently, none of these other schemes seeks to extend beyond the
Lorentz–Poincaré symmetry, and therefore none of them has reached the point of associating
the internal-time observable with the dilatation function.

However, work done with the Newtonian definitions of internal time shows some relations
with dilatations: the (non-relativistic) internal-time operator T of Misra, Prigogine and
Courbage [1] is associated with what are known in ergodic theory as K-flows, which are
characterized by exponentially diverging trajectories. This is to be compared with the fact
that the integral curves of the dilatation function D also have the nature of exponential growth,
xµ(λ) = eλxµ(0). A similar relation may be found in the discussion by Lockhart, Misra
and Prigogine [20] of geodesic flow in Friedman Universes with negative curvature which

1 For a recent similar emphasis on the distinction between the observers’ time and the proper time, but from a
different approach, see [15].
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also diverges exponentially. Also in the examples given by Vallèe [2] there is exponential
divergence of the trajectories associated with the definition of the internal time. Finally,
it is of interest to note the fact, hitherto not realized, that the internal time T of Misra,
Prigogine and Courbage extends naturally into the internal-time scheme presented here:
being defined (for Hamiltonian systems) via its commutation relation with the Hamiltonian
[H, T ] = ı, it can be shown that combining this commutation relation (or the corresponding
Poisson brackets for classical systems) with the Lorentz–Poincaré symmetry leads naturally
to the existence of a dilatation function D and consequently to the inclusion of scaling
symmetry.
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Appendix. The dilatation function in action-at-a-distance theories

This appendix is devoted to showing the existence of a dilatation function for the systems of
relativistic interacting particles presented in section 4. Varying the action integrals (16a) and
(16b) yields the single particle’s linear momenta for both the scalar and vector interactions,
given in equations (18a) and (18b), and their equations of motion

dp
µ
a

dτa

= −2qa

∑
b �=a

qb

∫
U ′(xab

2)(xµ
a − x

µ

b

)
dτb (scalar interaction)

= 2qa

∑
b �=a

qb

∫
b

U ′(xab
2)(xµ

a − x
µ

b

)
(ẋa · dxb) (vector interaction).

The total linear momenta

P µ({τa}) ≡
∑

a

pµ
a (τa) −

∑
(a,b)

2qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)

×U ′(xab
2
)(

xµ
a − x

µ

b

)
(dτa · dτb) (scalar interaction)

≡
∑

a

pµ
a (τa) +

∑
(a,b)

2qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)

×U ′(xab
2
)(

xµ
a − x

µ

b

)
(dxa · dxb) (vector interaction)

and total angular momenta

Jµν({τa}) ≡
∑

a

[
xµ

a (τa)p
ν
a(τa) − xν

a (τa)p
µ
a (τa)

]
+

∑
(a,b)

2qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)

×U ′(xab
2
)(

xµ
a xν

b − xν
a x

µ

b

)
(dτa · dτb) (scalar interaction)

≡
∑

a

[
xµ

a (τa)p
ν
a(τa) − xν

a (τa)p
µ
a (τa)

]

+
∑
(a,b)

qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)
U

(
xab

2
)(

dxµ
a dxν

b − dxν
a dx

µ

b

)
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+
∑
(a,b)

2qaqb

(∫ ∞

τa

∫ τb

−∞
−

∫ τa

−∞

∫ ∞

τb

)

×U ′(xab
2
)(

xν
a x

µ

b − xµ
a xν

b

)
(dxa · dxb) (vector interaction)

are conserved, their conservation (for both interactions) given by the relations

∂P µ

∂τa

= 0,
∂Jµν

∂τa

= 0.

For the definition of the total dilatation function, we first compute the differentials

d

(∑
a

xµ
a paµ

)
= −

∑
a

ma dτa −
∑

a

∑
b �=a

qaqb

∫
b

{
U

(
xab

2)

+ 2U ′(xab
2
)
[xa · (xa − xb)]

}
dτb dτa (scalar interaction)

= −
∑

a

ma dτa +
∑

a

∑
b �=a

qaqb

∫
b

{
U

(
xab

2
)

+ 2U ′(xab
2
)
[xa · (xa − xb)]

}
dxa · dxb (vector interaction).

The integrand in both cases may be reordered, using

2xa = (xa − xb) + (xa + xb)

as

U
(
xab

2
)

+ 2U ′(xab
2
)
[xa · (xa − xb)] = U

(
xab

2
)

+ xab
2U ′(xab

2
)

+ U ′(xab
2
)(

xa
2 − xb

2
)
.

The last term in the rhs, which is anti-symmetric in a and b, is used to define a double integral
interaction term in a manner similar to that in P µ and Jµν . The other two terms, which are
symmetric in a and b, cannot define (due to their symmetry) an interaction term in a similar
way, and we are thus led to defining the total dilatation function as in equations (17a) and
(17b) with differentials given by equations (19a) and (19b), correspondingly.

These dilatation functions reduce to the results of Stephas and von Baeyer [13] for the
electromagnetic (or more general, massless field) case, with U

(
xab

2
) = δ

(
xab

2
)

and the scaling
scheme (27). A more general scaling scheme, in which the charges also scale along with the
coordinates and the masses, is possible with the recipe

xµ → eλxµ, ma → e−λma, qa → e−nλqa

with n being an integer. The action integrals are then scale invariant and the observables of
the system transform as expected under scaling,

P µ → e−λP µ, Jµν → Jµν, D → D,

if U(s) is homogeneous of order n − 1 in its argument. Using the homogeneity condition

sU ′(s) = (n − 1)U(s)

it follows that the differentials of D are

dD({τa}) = −
∑

a


ma +

∑
b �=a

nqaqb

∫
b

U
(
xab

2
)

dτb


 dτa (scalar interaction)

= −
∑

a


ma −

∑
b �=a

nqaqb

∫
b

U
(
xab

2
)
ẋa · dxb


 dτa (vector interaction).

Unlike the massless field (n = 0) case, these differentials depend explicitly on the interaction.
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